Comparison of Aortic Root Dimensions and Geometries Before and After Transcatheter Aortic Valve Implantation by 2-and 3-Dimensional Transesophageal Echocardiography and Multislice Computed Tomography

OBJECTIVES: 3D transesophageal echocardiography (TEE) may provide more accurate aortic annular and left ventricular outflow tract (LVOT) dimensions and geometries compared with 2D TEE. We assessed agreements between 2D and 3D TEE measurements with multislice computed tomography (MSCT) and changes in annular/LVOT areas and geometries after transcatheter aortic valve implantations (TAVI).

METHODS:  Two-dimensional circular ({pi}xr2), 3D circular, and 3D planimetered annular and LVOT areas by TEE were compared with “gold standard” MSCT planimetered areas before TAVI.

RESULTS: Mean MSCT planimetered annular area was 4.65±0.82 cm2 before TAVI. Annular areas were underestimated by 2D TEE circular (3.89±0.74 cm2, P<0.001), 3D TEE circular (4.06±0.79 cm2, P<0.001), and 3D TEE planimetered annular areas (4.22±0.77 cm2, P<0.001). Mean MSCT planimetered LVOT area was 4.61±1.20 cm2 before TAVI. LVOT areas were underestimated by 2D TEE circular (3.41±0.89 cm2, P<0.001), 3D TEE circular (3.89±0.94 cm2, P<0.001), and 3D TEE planimetered LVOT areas (4.31±1.15 cm2, P<0.001). Three-dimensional TEE planimetered annular and LVOT areas had the best agreement with respective MSCT planimetered areas. After TAVI, MSCT planimetered (4.65±0.82 versus 4.20±0.46 cm2, P<0.001) and 3D TEE planimetered (4.22±0.77 versus 3.62±0.43 cm2, P<0.001) annular areas decreased, whereas MSCT planimetered (4.61±1.20 versus 4.84±1.17 cm2, P=0.002) and 3D TEE planimetered (4.31±1.15 versus 4.55±1.21 cm2, P<0.001) LVOT areas increased. Aortic annulus and LVOT became less elliptical after TAVI.

CONCLUSIONS: Before TAVI, 2D and 3D TEE aortic annular/LVOT circular geometric assumption underestimated the respective MSCT planimetered areas. After TAVI, 3D TEE and MSCT planimetered annular areas decreased as it assumes the internal dimensions of the prosthetic valve. However, planimetered LVOT areas increased due to a more circular geometry.

PMID: 19920027

Posted in Computed Tomography, Echo, Invasive Imaging and tagged , , , , , , , .

3 Comments

  1. An additional interesting aspect will be to examine the deformation of the root structures during the cardiac cycle, and the impact of the TAVI on that.

  2. A similar excellent paper, with important information for operators from Dr. Schoenhagen’s group is now published in JACC intervention (2010;3:105-113).

    Pre-Procedural Imaging of Aortic Root Orientation and Dimensions: Comparison Between X-Ray Angiographic Planar Imaging and 3-Dimensional Multidetector Row Computed Tomography.
    Vikram Kurra, Samir R. Kapadia, E. Murat Tuzcu, Sandra S. Halliburton, Lars Svensson, Eric E. Roselli, Paul Schoenhagen.
    JACC intervention. 2010;3:105-113.

  3. Also read:

    Use of Balloon Aortic Valvuloplasty to Size the Aortic Annulus Before Implantation of a Balloon-Expandable Transcatheter Heart Valve.
    Babaliaros VC, Junagadhwalla Z, Lerakis S, Thourani V, Liff D, Chen E, Vassiliades T, Chappell C, Gross N, Patel A, Howell S, Green JT, Veledar E, Guyton R, Block PC.
    JACC Cardiovasc Interv. 2010 Jan;3(1):114-118.
    PMID: 20129579

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>